Local properties of geometric graphs

نویسندگان

  • Jean Cardinal
  • Sébastien Collette
  • Stefan Langerman
چکیده

We introduce a new property for geometric graphs: the local diameter. This property is based on the use of the region counting distances introduced by Demaine, Iacono and Langerman as a generalization of the rank difference. We use it as a characterization of the local density of the vertices. We study the properties of those distances, and show that there is a strong relation between region counting distances and speed distances. We define the local diameter as the upper bound on the length of the shortest path between any pair of vertices, expressed as a function of the number of vertices in their neighborhood. We determine the local diameter of several well-studied graphs such as the Ordered Θ-graph and the Skip List Spanner. We also analyze the impact of the local diameter for different applications, such as path and point queries on geometric graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the total version of geometric-arithmetic index

The total version of geometric–arithmetic index of graphs is introduced based on the endvertex degrees of edges of their total graphs. In this paper, beside of computing the total GA index for some graphs, its some properties especially lower and upper bounds are obtained.

متن کامل

Some topological indices of graphs and some inequalities

Let G be a graph. In this paper, we study the eccentric connectivity index, the new version of the second Zagreb index and the forth geometric–arithmetic index.. The basic properties of these novel graph descriptors and some inequalities for them are established.

متن کامل

Compass routing on geometric networks ( 1999 , Kranakis , Singh , Urrutia )

Wireless networks are often modelled using geometric graphs. Using only local geometric information to compute a sequence of distributed forwarding decisions that send a message to its destination, routing algorithms can succeed on several common classes of geometric graphs. These graphs’ geometric properties provide navigational cues that allow routing to succeed using only limited local infor...

متن کامل

On Third Geometric-Arithmetic Index of Graphs

Continuing the work K. C. Das, I. Gutman, B. Furtula, On second geometric-arithmetic index of graphs, Iran. J. Math Chem., 1(2) (2010) 17-28, in this paper we present lower and upper bounds on the third geometric-arithmetic index GA3 and characterize the extremal graphs. Moreover, we give Nordhaus-Gaddum-type result for GA3.

متن کامل

The second geometric-arithmetic index for trees and unicyclic graphs

Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Geom.

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2004